
Fermilab FERMILAB-Pub-04/121-CD July 2004

1

Software Packaging with DAR

Natalia Ratnikovaa, Anzar Afaqa, Greg Grahama, Tony Wildishb �, Veronique Lefeburec

aFermi National Accelerator Laboratory
P.O.Box 500, MS 234, Batavia 60510, IL, USA

bPrinceton University
Princeton, New Jersey 08544 USA

cCERN/HIP, 1211 Geneva 23, Switzerland.

One of the important tasks in distributed computing is to deliver software applications to the computing

resources. DAR, Distribution after Release tool, is being used to package software applications for the world-wide

event production by the CMS Collaboration. This presentation will focus on the concept of packaging applications

based on the runtime environment. We discuss solutions for more e�ective software distribution based on two

years experience with DAR. Finally, we will give an overview of the application distribution process and the

interfaces to the CMS production tools.

1. Introduction

Compact Muon Solenoid CMS HEP experi-
ment [1] will run at the LHC accelerator at
CERN. CMS is using Grid technologies [2] to uti-
lize available computing resources for the world-
wide distributed mass production.
To make this possible software applications

must be brought to the production sites. We
want to have an automated way to create self-
consistent distributions of the software applica-
tions, based on the software releases installed at
CERN.
The Distribution After Release DAR tool was

developed at Fermilab for quick-and-easy deploy-
ment of the software applications, which can run
on the systems that do not have pre-existing ap-
plication speci�c environment.
The concept and �rst tool prototype were pro-

posed in 2001 [3], and since the end of 2001 the
tool was used for packaging and installation of
the software applications in the CMS distributed
Monte Carlo Event Production.

�Present address: CERN-EP/CMS, 1211 Geneva 23,
Switzerland.

2. DAR Concept

The distribution unit is an application, which is
considered to be a complete, self-contained soft-
ware program, including required shared libraries
and other �les. Applications are executed in a
particular runtime environment and accomplish
a particular computing task [4].
One important and natural requirement as-

sumed for the distributed computing on the Grid,
is that software applications should be relocat-
able, i.e. software application could be installed
and executed in the arbitrary location in the �le
system visible on the worker node (ref to alter-
native approaches). This complies with the Grid
architectures, where the disk space required for
the software installation can be allocated by the
resource broker, along with other resources such
as CPU time, etc.
We proceed from the assumptions that

� relocatable software does not contain hard-
coded absolute paths in the program or in
the shared libraries (except those referred
to the system area)

� all required executables are found in the lo-
cations speci�ed in the PATH environment

2

variable, which is extended appropriately
for each given application

� distributions containing pre-compiled bina-
ries also rely on the operating system com-
patibility.

Most of real quality software products are re-
locatable, and the actual locations of the soft-
ware components for a given installation are usu-
ally de�ned in the software con�guration pa-
rameters. One of the standard ways to pass
the con�guration information to the application
during the runtime is through the use of the
UNIX shell environment variables, such as PATH,
LD_LIBRARY_PATH, and others.
DAR is using the set of the runtime environ-

ment variable speci�c for a given application in
order to decide which �les need to be packaged
into the distribution DAR �le. The DAR �le is
then delivered to the working site, and can be
installed in any new directory. The runtime en-
vironment for the application is set using script
generated by DAR during the installation.

3. DAR Implementation

DAR distinguishes between three types of the
runtime environment variables, depending on the
value:

� The variable value is associated with some
path to the existing �le or directory in the
local �le system.

� Variables specifying a list of paths in the lo-
cal �le system (PATH -like variables), where
entries are separated by the colon delimiter.

� Variables set to simple values not associated
with any existing object in the local �le sys-
tem. These could be for example special
ags controlling the execution mode, URL
addresses, and other parameters that may
be used during the execution time.

All physical �les and directories found in the loca-
tions speci�ed through the runtime environment
variables are copied into the distribution, preserv-
ing the underlying directory structure.

In case of PATH-like variables DAR walks
through the speci�ed list of paths and copies all
contents into separate directories.
During installation DAR generates shell setup

environment script to be used later to initialize
the application environment according to the ac-
tual location of the software installation. The
directory structure and the order of paths in
the PATH-like variables are preserved to guarantee
that the application will pick the same objects as
in the original environment. For those variables,
which are not associated with any �les or direc-
tories, DAR will keep the original value. Finally
DAR generates a list of included �les with the in-
dication of the checksum and location relative to
the top of the installation directory.
Thus DAR provides a generic way to replicate

both the application and its environment in the
new location.

3.1. Optimizations

Of course the resulting DAR �le will likely con-
tain superuous directories and �les. DAR pro-
vides options for more selective packaging.
The same �les can be referred through di�erent

environment variables. To avoid multiple copies
in the distribution, DAR recognizes these situa-
tions and includes only one instance of the �le into
the distribution, and substitutes other references
by symbolic links.
The erase option allows expert to remove �les

or directories that are formerly referred by the ap-
plication environment, but are known to be not
necessary for running the application. The exam-
ple of such �les are *.html\;*.ps\;*.pdf\;CVS\
etc . In general for detection of �les, that could
be safely excluded, expert's knowledge of the soft-
ware application is required. It may take several
iterations to �gure out what can be removed, and
whether it is eÆcient and safe.

3.2. Tests

The primary goal of the DAR distribution is
to reproduce the same application environment
in di�erent locations. The measure of success of
the packaging is a reproducible operation of the
application. Two tests are usually applied.
First we compare output from the application

3

Production

Coordinator

RefDB
Reference

Database

Mass

Storage

P
ro

du
ct

io
n

R
eq

ue
st

Assignment

R
eq

ue
st

fo
r

A
pp

lic
at

io
n

DAR
DAR
DAR
DAR

file

MOP
Job

Submitter

MCRunJob
Job

Generator

Job

Definitio
n

CMS

Physics

Group
P

hy
si

cs
R

eq
ue

st

Software

DARDARDARDAR
Packaging

SRB
Storage

Resource

Broker

DARDARDARDAR file

Physics
Data

Production

GRID

CMS

Physicist
Physics

Proposal

Produced

D
ata

G
R

ID
Jo

b
S

ub
m

is
si

on

Figure 1. The CMS physics data production cycle.

executed in the native environment and from the
application installed from the distribution DAR
�le and executed on the same node. The di�er-
ence in produced output, if any, could either indi-
cate that the application is not truly relocatable,
or that the use of expert options broke the con-
sistency of the application.
After the DAR distributed application success-

fully passes the test on the same node, the same
application running on a separate node is tested.
The di�erence in this case usually indicates some
inconsistency of the system setup on di�erent
nodes.
To insure that the installation itself was not

corrupted, one can always compare the contents
of the installation directory against the list of �les
and their checksums provided by DAR.

4. Using DAR in CMS production

DAR created distributions are being used as a
mandatory way to install software for the oÆcial
CMS Monte Carlo production. Using the same
set of applications and consistent software dis-

tribution mechanisms insured stable performance
and trustworthy results.

4.1. CMS physics data production cycle

The general scheme of the CMS physics data
production cycle is presented in Figure 1.
Physicist proposes, and the corresponding

physics group approves request for the Monte
Carlo production. The request is formalized and
the database RefDB [5] is �lled with all the neces-
sary information including applications to be run
and running parameters, amount of data to be
produced etc. This information is used to make
a request for creating of the corresponding soft-
ware distribution. DAR creates the necessary dis-
tribution DAR-�le and put it into the Storage
Resource Broker [6] which provides a world wide
access to the �le.
Job generator MCRunJob [7] converts produc-

tion assignment into a set of scripts which will
be actually run on the farm. Next link is a Job
Submission (MOP [2]), which is a layer between
the CMS Production system and Grid computing
resources. MOP takes care that required DAR

4

distribution is installed on the Production Grid
[2] and then submits requests prepared by the
MCRunJob.
After the data are generated and processed on

the Grid, the processing summary is stored back
into the RefDB, and produced data are stored
in the mass storage system. This completes the
cycle and physicist can verify and analyze data,
generated according to the original request.

4.2. Creating DAR Distribution

Request for the DAR �le is initiated by the Pro-
duction Coordinator based on the original pro-
duction request. This triggers a creation of the
DAR �le based on the corresponding software re-
lease installation at CERN.
The RefDB-DAR interface has been developed

to formalize the requests for applications and pro-
vide bookkeeping of the available distributions.
The RefDB-DAR interface allows to download

request �le from the RefDB. The refdbdar util-
ity is then used to parse and validate the RefDB
request �le, builds requested executables, estab-
lishes corresponding environment. Then it uses
DAR to package the application. The resulting
DAR �le is veri�ed and stored in the SRB [6] for
distribution.

4.3. Installing DAR Distribution and Job

Submission

Production sites get the assignments with the
indication of the required DAR �le. DAR-ball
is then downloaded from the SRB and installed,
using DAR, on the worker nodes.
MOP is a system for distributing CMS Monte-

Carlo production jobs over the Grid.
MOP has capability of running any type of

scripts (jobs) at remote Grid sites, called Worker
Sites.
MOP run jobs as DAGs (Directed Acyclic

Graphs) which could be combined together to cre-
ate complex workows.
In general every DAG contains four stages:

� Stage-in: Bring in the required input �les
(from several sources) to the worker site.

� Run: Execute the job itself, producing re-
sults, logs, data.

� Stage-out: Send out produced results, data
and log �les.

� Clean-up: Clean the left over �les and di-
rectories at worker site.

DAR installation at a worker site is achieved by
creating a special MOP job that �rst pulls DAR
tool and application DAR distribution in stage-in,
runs installation by invoking DAR in run-stage,
brings back the results of the installation to the
submission site in stage-out, and then performs
clean-up operation at the worker site.

5. Conclusions

DAR-based distribution scheme is successfully
used in the CMS event production for an ex-
tended period of time. It allows to keep the
pace with the software developments and deliver
software applications to the production sites with
ease and in a timely fashion. Being re-packaged
into RPM �les, applications can be re-used within
di�erent distribution approaches (e.g. LCFG).

REFERENCES

1. CMS Experiment, see for example:
http://cmsdoc.cern.ch/cms/outreach/html

2. Gregory E. Graham, et al, The CMS In-
tegration Grid Testbed. CHEP03 proceed-
ings,CHEP03, La Jolla, March, 2003

3. Natalia M. Ratnikova, Gregory E. Graham,
CMS Software Distribution and Installation
Systems: Concepts, Practical Solutions and
Experience at Fermilab as a CMS Tier 1
Center. Proceedings of CHEP01, Beijing,
September, 2001

4. N. Ratnikova, A. Sciaba, S. Wynho�, Dis-
tributing Applications in Distributed Envi-
ronment. NIMA, Volume 502, No. 2-3, (April
2003) 458-460.

5. V.Lefebure, RefDB: A Reference Database for
CMS Monte Carlo Production. CHEP03 pro-
ceedings, CHEP03, La Jolla, March, 2003.

6. Storage Resource Broker.
http://www.npaci.edu/DICE/SRB

7. G.Graham, MCRunJob: A Workow Plan-
ner for Grid Production Processing. CHEP03
proceedings,CHEP03, La Jolla, March, 2003

